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Entscheidungsunterstützung für kritische Situationen
im Produktionsumfeld“

Objective: Operator Support functions

▪ Early Warnings

▪ Ad-hoc Analysis

▪ Decision Support

Approach: Integrated Analysis of all plant 
data
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Anomaly Detection in Process Industry

▪ Very few critical events

▪ Drift of concepts (process parameters, system changes)

▪ Two data sources

– sensor readings

– alarm messages

▪ Two stakeholders

– Operator: continuously monitoring the plant; has to react to sudden 
changes

– Process engineer:  monitors overall trends; long term observations
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Industrial Plant - Alarm Patterns

▪ Set of assets (part of a plant)
▪ Each asset contains a set of 

measurements
▪ Value range is monitored to 

trigger alarms

▪ Sequence of alarms grouped by 
asset
 Snapshot of an abstract state 

of the plant

 Model and compare these 
states
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Industrial Plant - Alarm Patterns

▪ Set of assets (part of a plant)
▪ Each asset contains a set of

measurements
▪ Value range is monitored to

trigger alarms

▪ Sequence of alarms grouped by
asset
 Snapshot of an abstract state

of the plant

 Model and compare these
states

By Con-struct - Own work, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=18473227

Piping and Instrumentation Diagram
(P&ID)
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HypGraphs - Graph-Based and Sequential Hypotheses

▪ First-Order Markov Chain modeling: 
Model transitions between different states

▪ Given a probability distribution on certain events
(e.g., on alarms on different sub-parts of a plant)

– Determine transition model

– Collect transition matrix

– Compare with hypotheses
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Exceptional Sequential Link Trails

▪ Construction of the transition matrix:

– Graph constructed from alarm sequences

– Considering subplant – subplant relations extracted from the P&IDs

▪ Anomaly detection/analysis: 

– Situations can be evaluated using Bayes factors analysis

– Comparing data to model hypothesis (normal behavior) and a random 
one (lower bound)
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Exceptional Sequential Link Trails (2)
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RapidMiner Workflow for HypGraphs

▪ Varying tolerance factor k of the estimation algorithm

▪ Algorithm implemented as RapidMiner extension, available at: GitHub

Running HypGraphs with

different settings for k
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HypGraphs - Visualization
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Anomaly Detection on Sensor Data

Time Series

Anomaly Score

Representation

Live time-series Q Database time-series DB
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Dist(Q,W)

The distance between a live data time-series and the most similar 
subsequence from historical database is used to calculate the anomaly score.

Transformation

Distance/
Similarity Evaluation



- 15 -

Uni- and Multivariate Anomaly Scores
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Comparing HypGraphs and Local-Outlier-Factor

HypGraphs Evidence Local Outlier Factor
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Conclusion

▪ Two approaches for anomaly detection in industrial enviroments

– HypGraphs: new method for analysing sequential & graph based data

– Anomaly scores of sensor data

▪ References:

– Atzmüller, M. ; Schmidt, A. ; Klöpper, B. ; Arnu, D.: 
HypGraphs: An Approach for Analysis and Assessment of Graph-Based and
Sequential Hypotheses. 
In: New Frontiers in Mining Complex Patterns, Postproceedings NFMCP 2016 

– RapidMiner HypGraphs extension: https://github.com/rapidminer/rapidminer-
extension-hypgraphs
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