

Anomaly Detection and Structural Analysis in Industrial Production Environments

David Arnu¹, Martin Atzmüller², Andreas Schmidt³

¹ RapidMiner GmbH, ² Tillburg University, ³ University of Kassel

iDSC 2017 Salzburg, Austria

Research Project FEE –

"Frühzeitige Erkennung und Entscheidungsunterstützung für kritische Situationen im Produktionsumfeld"

Objective: Operator Support functions

- Early Warnings
- Ad-hoc Analysis
- Decision Support

Approach: Integrated Analysis of all plant data

Bundesministerium für Bildung und Forschung

FEE – Data and System Landscape

Operators

Anomaly Detection in Process Industry

- Very few critical events
- Drift of concepts (process parameters, system changes)
- Two data sources
 - sensor readings
 - alarm messages
- Two stakeholders
 - Operator: continuously monitoring the plant; has to react to sudden changes
 - Process engineer: monitors overall trends; long term observations

Industrial Plant - Alarm Patterns

- Set of assets (part of a plant)
- Each asset contains a set of measurements
- Value range is monitored to trigger alarms
- Sequence of alarms grouped by asset
 - Snapshot of an abstract state of the plant
 - Model and compare these states

Industrial Plant - Alarm Patterns

- Set of assets (part of a plant)
- Each asset contains a set of measurements
- Value range is monitored to trigger alarms
- Sequence of alarms grouped by asset
 - Snapshot of an abstract state of the plant
 - Model and compare these states

Piping and Instrumentation Diagram (P&ID)

By Con-struct - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=18473227

HypGraphs - Graph-Based and Sequential Hypotheses

 First-Order Markov Chain modeling: Model transitions between different states

- Given a probability distribution on certain events (e.g., on alarms on different sub-parts of a plant)
 - Determine transition model
 - Collect transition matrix
 - Compare with hypotheses

HypGraphs (2)

Exceptional Sequential Link Trails

- Construction of the transition matrix:
 - Graph constructed from alarm sequences
 - Considering subplant subplant relations extracted from the P&IDs

- Anomaly detection/analysis:
 - Situations can be evaluated using Bayes factors analysis
 - Comparing data to model hypothesis (normal behavior) and a random one (lower bound)

Exceptional Sequential Link Trails (2)

RapidMiner Workflow for HypGraphs

- Varying tolerance factor k of the estimation algorithm
- Algorithm implemented as RapidMiner extension, available at: GitHub

HypGraphs - Visualization

Anomaly Detection on Sensor Data

The distance between a live data time-series and the most similar subsequence from historical database is used to calculate the anomaly score.

Uni- and Multivariate Anomaly Scores

Comparing HypGraphs and Local-Outlier-Factor

Conclusion

- Two approaches for anomaly detection in industrial environments
 - HypGraphs: new method for analysing sequential & graph based data
 - Anomaly scores of sensor data

- References:
 - Atzmüller, M.; Schmidt, A.; Klöpper, B.; Arnu, D.: HypGraphs: An Approach for Analysis and Assessment of Graph-Based and Sequential Hypotheses.
 In: New Frontiers in Mining Complex Patterns, Postproceedings NFMCP 2016
 - RapidMiner HypGraphs extension: <u>https://github.com/rapidminer/rapidminer-</u> <u>extension-hypgraphs</u>

ANOMALY DETECTION AND STRUCTURAL ANALYSIS IN INDUSTRIAL PRODUCTION ENVIRONMENTS

David Arnu

Email: darnu@rapidminer.com Web: rapidminer.com

RapidMiner GmbH

RapidMiner, Inc.

Westfalendamm 87 44141 Dortmund Germany 10 Fawcett St., 5th Floor Cambridge MA 02138 United States

+49 231 292 993 01

+1 617 401 7708