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VS.

Machine Hearing

Acoustic Scene Classifier 
(ASC)

Acoustic Event Detection 
(AED)

Human and Machine Hearing is a book for people who want to understand how the auditory system and the brain process sound, how to encapsulate aspects of our hearing knowledge in computer 
algorithms, and how to combine the algorithms into a machine that simulates the role of hearing in some aspect of everyday life—such as listening to the melody of a song or talking to a friend in a noisy 
restaurant. This is what Dick Lyon means by “Machine Hearing.”
F.Lyon Richard, Human and Machine Hearing, p. xi. Cambridge University Press, 2017. 
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State of the art
Front-end 

Feature Extraction
Back-end 

Classification

Frame base (MFCC 
– Vectors, …)

Machine Learning

Spectrogram base
(CQT, log-mel, 

Gammatone, …)
Deep Learning

Recently

4 years ago

Two-dimensional
shape like image

CNN, RNN …

Dataset: IEEE AASP Challenge on Detection and 
Classification of Acoustic Scenes and Events (DCASE) 
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Our proposed single CNN-7 architecture reports a complexity of 1,129 MB for 
non-zero parameters with using 32 bits for representing one parameter
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1. Channel Restriction (CR) 2. Decomposed convolution (DC)
The individual CNN-7 complexity is reduced to 

nearly 1/8.5 of the original size (1,129 MB ).

The model complexity
(individual CNN-7 using CR & DC) 
is reduced to nearly 1/34 times.

[30] K. Koutini, F. Henkel, H. Eghbal-zadeh, and G. Widmer, “Lowcomplexity models for acoustic scene 
classification based on receptive field regularization and frequency damping,” arXiv preprint 
arXiv:2011.02955, 2020.
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The Framework Proposed – Experimental Setting
* The Development dataset (Train. & Eval. Subsets): The
dataset in slightly unbalanced, recorded from 12 large
European cities: Amsterdam, Barcelona, Helsinki, Lisbon,
London, Lyon, Madrid, Milan, Prague, Paris, Stockholm,
and Vienna.
The audio recordings were recorded from 3 different
devices namely A (10215 recordings), B (749 recordings), C
(748 recordings). Additionally, synthetic data for 11 mobile
devices was created based on the original recordings,
referred to as S1 (750 recordings), S2 (750 recordings), S3
(750 recordings), S4 (750 recordings), S5 (750 recordings),
and S6 (750 recordings).

* The Evaluation dataset without labels (blind set for
testing), which is used to evaluate the submitted systems.
The total number of 10-s segments is 7920 (22 hours),
which is significantly larger than the Development dataset.
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* Librosa for generating spectrogram,
Tensorflow framework for constructing Neural Networks,
Kullback-Leibler (KL) loss function, Adam optimization,
ACC (%) metric, ….http://dcase.community/
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*Further research on:
+ Techniques of model compression: Distillation, Pruning, Quantization, etc.
+ Novel neural network architectures to improve performance.
+ Issue of mismatched recording devices.
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