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Human and Machine Hearing is a book for people who want to understand how the auditory system and the brain process sound, how to encapsulate aspects of our hearing knowledge in computer

algorithms, and how to combine the algorithms into a machine that simulates the role of hearing in some aspect of everyday life—such as listening to the melody of a song or talking to a friend in a noisy
restaurant. This is what Dick Lyon means by “Machine Hearing.”

F.Lyon Richard, Human and Machine Hearing, p. xi. Cambridge University Press, 2017.
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TABLE I
THE CNN-7 NETWORK ARCHITECTURE BASELINE (INPUT PATCH OF 128 X128 x3)
Network architecture Output
BN - Convolution ([3X%3|@Cyyt1 = 32) - ReLU - BN - Dropout (10%) 128x128x 32
BN - Convolution ([3%3]|@Cyyt2 = 32) - ReLU - BN - AP [2x2] - Dropout (10%) 64x64x32
BN - Convolution ([3%3]|@Cyy,t3 = 64) - ReLU - BN - Dropout (10%) 64x64x64

BN - Convolution ([3%3]|@Cyyt4 = 64) - ReLU - BN - AP [2x2] - Dropout (10%) 32x32x64
BN - Convolution ([3X3]|@Cyyt5 = 128) - ReLU - BN - AP [2x2] - Dropout (10%) 16x16x128
BN - Convolution ([3X%3]@Cy,:t6 = 128) - ReLU - BN - GAP - Dropout (10%) 128

FC - Softmax C =10
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Our proposed single CNN-7 architecture reports a complexity of 1,129 MB for
non-zero parameters with using 32 bits for representing one parameter
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[30] K. Koutini, F. Henkel, H. Eghbal-zadeh, and G. Widmer, “Lowcomplexity models for acoustic scene

classification based on receptive field regularization and frequency damping,” arXiv preprint
arXiv:2011.02955, 2020.
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The model complexity

MOdEI DECOmpreSSK)n — (individual CNN-7 using CR & DC)

is reduced to nearly 1/34 times.

1. Channel Restriction (CR) 2. Decomposed convolution (DC)
Restrict the number of channels: Coutl from 32 to 16, Cout3 and Cout4 The individual CNN-7 complexity is reduced to
from 64 to 32, Cout5 and Coutb from 128 to 64. nearly 1/8.5 of the original size (1,129 MB ).
. X4 X3 X2 X1 Cout/d, " 1]
- reduce an individual CNN-7 complexity to 313 KB that nearly C"V' Cony /J
. . . .F / /
equals to 1/4 of the original size (1,129 MB ). * ki x3] @ Cout/d { { '
TABLE I X1
THE CNN-7 NETWORK ARCHITECTURE BASELINE (INPUT PATCH OF 128 X128 % 3) —/ LZ

Network architecture Output Cin X1 Conv '

BN - Convolution ([3X3 ReLU - BN - Dropout (10%) 128X 128x32 X2 N

BN - Convolution ([3x3 ReLU - BN - AP [2x2] - Dropout (10%) | 64x64x32 M u/ [1x1] @ Cout/4
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[30] K. Koutini, F. Henkel, H. Eghbal-zadeh, and G. Widmer, “Lowcomplexity models for acoustic scene

classification based on receptive field regularization and frequency damping,” arXiv preprint
arXiv:2011.02955, 2020.
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[36] K. Xu, D. Feng, H. Mi, B. Zhu, D. Wang, L. Zhang, H. Cai, and S. Liu, “Mixup-based acoustic scene classification using multi-channel convolutional neural network,” in Pacific Rim Conference on

Multimedia, 2018, pp. 14-23.
[38] D. S. Park, W. Chan, Y. Zhang, C-C. Chiu, B. Zoph, E. D. Cubuk, and Q. V. Le, “Specaugment: A simple data augmentation method for automatic speech recognition,” arXiv preprint

arXiv:1904.08779, 2019.



The Framework Proposed — Experimental Setting

THE NUMBER OF 10-SECOND AUDIO RECORDINGS CORRESPONDING TO

TABLE II

EACH SCENE CATEGORIES IN THE TRAIN. AND EVAL. SUBSETS
SEPARATED FROM THE DCASE 2021 TASK 1A DEVELOPMENT
DATASET [35], AND THE EVALUATION DATASET [32].

Category Train. Subset Eval. Subset | Evaluation
Airport 1393 296 -
Bus 1400 297 -
Metro 1382 297 -
Metro Station 1380 297 -
Park 1429 297 -
Public square 1427 297 -
Shopping mall 1373 297 -
Street pedestrian 1386 297 -
Street traffic 1413 297 -
Tram 1379 296 -
Total 13962 2968 7920
(=38.79 hours) | (=8.25 hours) (22 hours)

http://dcase.community/

* The Development dataset (Train. & Eval. Subsets): The
dataset in slightly unbalanced, recorded from 12 large
European cities: Amsterdam, Barcelona, Helsinki, Lisbon,
London, Lyon, Madrid, Milan, Prague, Paris, Stockholm,
and Vienna.

The audio recordings were recorded from 3 different
devices namely A (10215 recordings), B (749 recordings), C
(748 recordings). Additionally, synthetic data for 11 mobile
devices was created based on the original recordings,
referred to as S1 (750 recordings), S2 (750 recordings), S3
(750 recordings), S4 (750 recordings), S5 (750 recordings),
and S6 (750 recordings).

* The Evaluation dataset without labels (blind set for
testing), which is used to evaluate the submitted systems.
The total number of 10-s segments is 7920 (22 hours),
which is significantly larger than the Development dataset.
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* The Development dataset (Train. & Eval. Subsets): The
dataset in slightly unbalanced, recorded from 12 large
European cities: Amsterdam, Barcelona, Helsinki, Lisbon,
London, Lyon, Madrid, Milan, Prague, Paris, Stockholm,
and Vienna.

The audio recordings were recorded from 3 different
devices namely A (10215 recordings), B (749 recordings), C
(748 recordings). Additionally, synthetic data for 11 mobile
devices was created based on the original recordings,
referred to as S1 (750 recordings), S2 (750 recordings), S3
(750 recordings), S4 (750 recordings), S5 (750 recordings),
and S6 (750 recordings).

* The Evaluation dataset without labels (blind set for
testing), which is used to evaluate the submitted systems.
The total number of 10-s segments is 7920 (22 hours),
which is significantly larger than the Development dataset.

* Librosa for generating spectrogram,
Tensorflow framework for constructing Neural Networks,

Kullback-Leibler (KL) loss function, Adam optimization,
ACC (%) metric, ....



Agenda

1. Motivation & Dataset
2. The Framework Proposed

3. Results & Discussion



Results

Performance comparison of CNN-7 w/ CR & DC among three spectrograms, with different time lengths,
with or without using data augmentations (Acc. %)



Results

Performance comparison of CNN-7 w/ CR & DC among three spectrograms, with different time lengths,
with or without using data augmentations (Acc. %)

Without data augmentations

With Data augmentations

Spectrogram | 1-second 2-second S5-second 10-second | 1-second 2-second S-second 10-second
MEL 56.7 579 56.2 60.5 54.6 57.9 59.5 584
GAM 53.2 55.0 53.1 53.9 58.9 60.1 60.6 57.1
CQT 443 47.7 48.6 49.2 442 45.7 48.6 49.1




Results

Performance comparison of CNN-7 w/ CR & DC among three spectrograms, with different time lengths,
with or without using data augmentations (Acc. %)

Without data augmentations With Data au ions
Spectrogram | 1-second 2-second S5-second 10-second | 1-second 2-second (5-second | 10-second
MEL 56.7 579 56.2 60.5 54.6 57.9 59.5 584
GAM 53.2 55.0 53.1 53.9 58.9 60.1 60.6 57.1
CQT 443 47.7 48.6 49.2 442 45.7 48.6 49.1




Results

Performance comparison of CNN-7 w/ CR & DC among three spectrograms, with different time lengths,
with or without using data augmentations (Acc. %)

Without data augmentations With Data au ions
Spectrogram | 1l-second 2-second S-second 10-second | 1-second 2-second ([5-second | 10-second
MEL 56.7 579 56.2 60.5 54.6 57.9 59.5 58.4
GAM 53.2 55.0 53.1 53.9 58.9 60.1 60.6 57.1
CQT 443 47.7 48.6 49.2 442 45.7 48.6 49.1

Performance comparison among DCASE baseline, the CNN-7 baseline, the cnn-7
baseline with channel restriction (CNN-7 w/ CR), the cnn-7 baseline with channel
restriction and decomposed convolution (CNN-7 w/ CR & DC) (Acc. %).
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Performance comparison of CNN-7 w/ CR & DC among three spectrograms, with different time lengths,
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Without data augmentations With Data au ions
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Bus 47.1 73.7 70.4 69.0
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Metro station 28.3 539 48.1 45.1
Park 69.0 73.1 78.5 74.4
Public square 25.3 343 38.4 25.9
Shopping mall 61.3 529 50.2 434
Street pedestrian 38.7 394 35.0 32.7
Street traffic 62.0 84.5 88.2 89.6
Tram 53.0 67.9 62.5 52.7
Average (477 59.7 57.1 56.7
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The number of 10-second audio scene recordings corresponding to each
device in the train. and eval. subsets separated from the DCASE 2021
Task 1a development dataset [35] and performance for each devices.

Devices | Train. | Eval. | Acc. %
A 10215 330 79.1
B 749 329 69.6
C 748 329 70.8
S1 750 330 65.8
S2 750 330 63.6
S3 750 330 67.0
S4 0 330 63.9
S5 0 330 60.0
S6 0 330 60.3




| Performance comparison (Acc.%) of DCASE baseline, individual spectrograms (CQT, GAM, and MEL), and the ensemble of three spectrograms
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| Performance comparison (Acc.%) of DCASE baseline, individual spectrograms (CQT, GAM, and MEL), and the ensemble of three spectrograms
Res u tS across all scene categories (using CNN-7 with CR & DC, 5-second time length, and mixup & spectrum data augmentations)
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The number of 10-second audio scene recordings corresponding to each
device in the train. and eval. subsets separated from the DCASE 2021 Top-10 accuracy performance (Acc. %) systems
Task 1a development dataset [35] and performance for each devices. submitted for DCASE 2021 Task 1a challenge
Devices | Train. | Eval. | Acc. % Systems valuation dataset| Eva. Subset
A 10215 | 330 79.1 Top-1[40] 6.1 LE
B 749 | 329 | 696 Top-2 [41] 23 X
Top-3 [42] 72.1 69.5
C 748 329 70.8
— Top-4 [43] 70.3 69.0
S1 750 330 65.8 Top-5 [44] 70.1 i
S2 750 330 63.6 Our system 69.6 66.7
S3 750 330 67.0 Top-7 [45] 69.6 65.0
S4 0 330 63.9 Top-8 [46] 68.8 70.2
S5 0 330 60.0 Top-9 [47] 68.5 65.2
Top-10 [48] 68.3 69.7
S6 0 330 \60.3) DCASE baseline [31] [\ 45.6 y, 47.7




Discussion

* Achievements:

Multiple spectrograms, data augmentation, model compression to deal with
ASC challenges for high-performance low-complexity model (i.e. target to edge
devices)
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*Further research on:
+ Techniques of model compression: Distillation, Pruning, Quantization, etc.
+ Novel neural network architectures to improve performance.
+ Issue of mismatched recording devices.




Thank you & Questions



