CIRCULAR ECONOMY 4.0
Enabling the circular economy using smart data

Mario Drobics
Head of Competence Unit Cooperative Digital Technologies
AIT Center for Digital Safety & Security
Phase 1: Digitalization of machines and isolated process steps
 ➔ efficiency of singular working steps

Phase 2: Digitalization of production environments and process chains
 ➔ efficiency of integrated processes

Phase 3: Digitalization of ecosystems & business-processes
 ➔ holistic view

A SHORT HISTORY OF DIGITALIZATION
DIGITAL TRANSFORMATION UTILIZES A HOLISTIC APPROACH

Focus on benefit & impact

Humans & Environment

Digital Transformation

Distributed and interrelated value-creation

Business

Technologies

Enabler
TECHNOLOGY ENABLES THE CREATION OF COMPLEX INNOVATION ECOSYSTEMS

<table>
<thead>
<tr>
<th>Technologies</th>
<th>Applications</th>
<th>Systems</th>
<th>Innovation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artificial Intelligence</td>
<td>3D Printing</td>
<td>Autonomous Production</td>
<td>New Production Processes</td>
</tr>
<tr>
<td>Sensors</td>
<td>Internet of Things</td>
<td>Edge Computing</td>
<td>New Business Models</td>
</tr>
<tr>
<td>Computational Power</td>
<td>Additive Manufacturing</td>
<td>Cloud Services</td>
<td>New Products & Services</td>
</tr>
<tr>
<td>Embedded Devices</td>
<td>Big Data</td>
<td>Smart Logistics</td>
<td></td>
</tr>
<tr>
<td>Connectivity</td>
<td></td>
<td>Smart Services</td>
<td></td>
</tr>
</tbody>
</table>
ADVANCED DATA SERVICES ENABLE OPTIMIZATION OF ENERGY & RESOURCE USAGE

Digital Transformation supports Sustainable Development by providing a holistic view integrating business, social, and environmental aspects of value chains across organizations.
CIRCULAR ECONOMY

- Aims to minimize resource input, as well as waste and emission production by
 - Maximum efficiency in the use of finite resources
 - Gradual transition to renewable resources
 - Recovery of materials and products and the end of their life-time.

- Principles:
 1. Minimize waste and pollution
 2. Extent useful life of products and materials
 3. Regenerate natural systems
ENABLING THE CIRCULAR ECONOMY

Environmental Perspective (usage of resources)

Social Perspective (impact on society / humans)

Business Perspective ()

Planning Production Operation End-of-life

Efficiency Usage

Reuse Refurbish Recycle Re-Design

Data

19/10/2021
CIRCULAR ECONOMY BUSINESS MODELS (CEBM)

Circular Supply Chains
- Sustainable usage of resources (e.g. recycleable materials, renewable energy, etc.)
 ➞ Requires data on availability of materials, synchronize energy demand/need, etc.

Resource Recovery
- Recover useful resources/energy out of disposed products or by-products
 ➞ Requires information on materials & quality along life-cycle

Product Life Extension
- Extend working lifecycle of products and components
 ➞ Requires data on spare parts (store/rebuild), product design, etc.

Sharing Platforms
- Increased product usage by making possible shared use/access/ownership
 ➞ Requires planning of usage & flexible billing processes

Product as a Service
- Offer product access and retain ownership to encourage responsible use
 ➞ Requires flexible business processes & advanced product maintenance

Source: Accenture (2014) "Circular Advantage"
DATA SPACES

Integrating data & services along the value-chain

• Data spaces provide a **domain specific ecosystem** to
 • **utilize data & services** across organizations
 • **share & monetarize data**
 • **provide data-based services**

• **Key design principles**
 • federated
 • interoperable
 • managed
 • trustful
GAIA-X ENABLES DATA-DRIVEN SERVICES
EXAMPLE FOR BATTERY DATA SPACE

Reducing waste and supporting reuse of batteries

• EU initiative to establish a **battery passport** to minimize environmental impact of batteries
 • Increase use of recycled material
 • Extend period of use
 • Reduce waste across life-cycle
• Batter data space enables **efficient refurbishment & recycling** by collecting information along the life-cycle
 • Raw materials used
 • Production parameters
 • Usage characteristics
Anomaly detection in operation of windmills to detect critical failures and prevent stand-stills

EXAMPLE FOR ENERGY DATA SPACE

Image: Fraunhofer IML
EXAMPLE FOR MOBILITY DATA SPACE

Data integration to ensure traffic flow and offer new services
THANK YOU!

Contact
Mario Drobics
Head of Competence Unit Cooperative Digital Technologies
AIT Austrian Institute of Technology
Mario.Drobics@ait.ac.at
+43 50 550-4810