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Vibration based condition monitoring systems

i) can accurately identify different conditions by capturing dynamic features.

ii) enable large scale operations due to low-cost sensors.

Research in the field mainly focused on classification or anomaly detection.

Unsupervised learning methods can prove instrumental as 

i) a preprocessing step for supervised learning methods.

ii) a stand-alone method when dealing with missing labels.

Vibration based condition monitoring.
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There is little research on clustering approaches in vibration data, and the solutions are often 

optimized for a singe data set.

We provide a fundamental analysis of

i) feature extraction and selection methods.

ii) clustering algorithms.

iii) validated over several data sets. 

We aimed to answer the following questions.

i) Which combinations of statistical features and clustering algorithms perform best 

for multiple data sets?

ii) Does the performance of statistical feature and clustering algorithm combinations 

generalize for arbitrary data sets?

iii) Can the combination of several different features improve the performance of the 

clustering?

iv) Can principal component analysis (PCA) improve the performance of the clustering by 

selecting the most representative features?

v) How does the specified number of clusters affect the performance of the clustering?
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Data Set 1 in time and frequency domain.

i) Acquired by Siemens for 

development of anomaly 

detection and classification 

algorithms.

ii) Captured using a test bench with 

a centrifugal pump.
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Data Set 2 in time and frequency domain.

i) Open-source, part of a 

publication on the development 

and evaluation of algorithms for 

imbalance detection 

ii) Captured using imbalanced 

rotating shafts.
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Data Set 3 in time and frequency domain.

i) Skoltech Anomaly Benchmark 

(SKAB), an open-source data set 

designed for evaluating anomaly 

detection algorithms.

ii) Captured using a test bench with 

a water pump.
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Statistical features were extracted from

i) Time domain (TD), derived from vibrational amplitudes.

ii) Frequency domain (FD), derived from frequency components.

We used the following features.

i) Arithmetic mean of absolute values (Abs Mean)

ii) Median of absolute values (Abs Median)

iii) Standard deviation (Std)

iv) Interquartile range (IQR)

v) Skewness of absolute values (Abs Skew)

vi) Kurtosis of absolute values (Abs Kurt)
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i) K-means clustering, which is one of the most popular iterative clustering methods.

ii) Gaussian mixture model clustering (GMM), which models each cluster in terms of a 

normal distribution.

iii) Ordering Points To Identify the Clustering Structure (OPTICS), which works like an 

extended DBSCAN algorithm for an infinite number of distance parameters.

Comparison of different clustering algorithms in the feature space.
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Which combinations of statistical features and clustering algorithms perform best for 

multiple data sets?

i) K-means performed best.

ii) OPTICS performed worst.

iii) Lower statistical moments performed better than higher moments.

Average purity per feature for different algorithms.
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Does the performance of statistical feature and clustering algorithm combinations generalize for 

arbitrary data sets?

i) Some features appear to be superior in general.

ii) Does not really generalize for arbitrary data sets.

K-means clustering purity per feature for different data sets.

K-means clustering in the feature space
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Does the performance of statistical feature and clustering algorithm combinations generalize for 

arbitrary data sets?

i) OPTICS performed far worse than the other algorithms.

ii) Could be a result of high variance and low class separability in industrial data.

OPTICS clustering purity per feature for different data sets.

OPTICS clustering in the feature space
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Can the combination of several different features improve the performance of the clustering?

i) It did not. 

ii) Even though they are commonly used in the domain.

K-means clustering purity for feature combinations.
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Can principal component analysis (PCA) improve the performance of the clustering by selecting 

the most representative features?

i) It did not. 

ii) It is to note that even just one or two principal components seem to suffice for clustering.

K-means clustering purity for different numbers of principal components.
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How does the specified number of clusters affect the performance of the clustering?

i) Performance of K-means increased for 1.5 times the number of conditions.

ii) But did not continue to increase with an increasing number of clusters.

K-means clustering purity for different numbers of principal components.
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How does the specified number of clusters affect the performance of the clustering?

i) GMM’s performance increased continuously until 2 times the number of conditions

ii) But declined with an increasing number of clusters.

iii) Could be a result of GMM not locating any more distinct normal distributions in the data.

GMM purity for different numbers of principal components.
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i) In vibration data, lower statistical moments are more important.
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What did we learn?

i) In vibration data, lower statistical moments are more important.

ii) K-means and GMM perform far better than OPTICS for this data.

iii) Limited improvements from feature combinations and PCA.

iv) Ideal number of clusters of about 1.5 to 1.75 times the number of conditions.

What are the limitations?

i) Only three different data sets were used.

ii) Only three select clustering algorithms were used.

iii) Only three tests per experimental setting were run.

Future work.

i) Increasing the number of data sets for better conclusions about generalizability.

ii) Increasing the number of clustering algorithms.
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